OXIS Wins Funding and Contracts for Lithium Sulfur Batteries

A polymer version of the potent but historically troubled lithium-sulfur chemistry

In September, U.K.-based polymer lithium-sulfur battery developer OXIS Energy closed a $24 million funding round from South African investor Sasol New Energy, followed in November by a contract from the British Ministry of Defence. The developments at OXIS highlight a year of encouraging activity for lithium-sulfur battery (LSB) technology.

OXIS Energy was founded in 2004 in Oxford, U.K. The company states it has been granted 27 patents, with 32 additional pending. The CEO is Huw W. Hampson-Jones. There are significant Russian technical roots via CTO Vladimir Kolosnitsyn.

The lithium-sulfur battery theoretically has up to five times the storage density of lithium-ion (in practice maybe triple), along with good safety and deep-discharge behavior. However, persistent problems, especially with cycle life, have been a challenge to commercialization. Critical reactants are permanently lost due to solubility reactions, when they pass through a polysulfide stage during cycling. Early cells had a cycle life in the single digits, although recent versions have done much better (vehicle applications require several thousand cycles).

A year of lithium-sulfur activity

Caution is warranted in assessing new battery developments -- the devil is in the details. For example, the LSB does not yet approach as high-rate a discharge as has been achieved with lithium-ion and nickel-metal hydride, so vehicles may need a supplementary surge buffer, perhaps an ultracapacitor. Furthermore, in recent years, old-line battery manufacturers such as Johnson Controls have tended to fare better than startups (witness the recent bankruptcies of Ener1 and A123 Systems).

However, the prize here is serious. Imagine a Chevy Volt with a 150-pound battery pack (instead of almost 400 pounds), or a Nissan Leaf with a 200-mile electric range (instead of about 75). With apologies to Envia and others, there is unlikely to be nearly as much headroom for improvement in the lithium-ion battery at this point.

 

From OXIS Energy