GTM Research

Cost and LCOE by Generation Technology, 2009-2020

November 2011

Prepared by: Brett Prior Senior Analyst (617) 500-4385 prior@gtmresearch.com

LCOE Inputs

2011 LCOE Inputs for a hypothetical plant in the Southwest US (DNI of 6.85 kWh/m^2/day)

						PV: CdTe,	PV: Mono, 1-	PV: Multi,	High CPV		
Technology	Trough		Tower		CLFR	fixed	axis	fixed	(lens)	Wind	Gas CC
Cooling	Wet	Dry	Dry	Dry	Dry						
Storage	No	No	No	Yes	No						
Technology Assumptions											
Project Capacity (MW)	250	250	250	250	250	250	250	250	250	250	250
EPC Cost (\$/kW-ac)	\$4,067	\$4,249	\$4,250	\$5,136	\$3,482	\$2,791	\$3,893	\$2,856	\$2,791	\$2,205	\$909
Other Owner's Costs (\$/kW-ac)*	<u>\$407</u>	<u>\$425</u>	<u>\$425</u>	<u>\$514</u>	<u>\$348</u>	<u>\$279</u>	<u>\$389</u>	<u>\$286</u>	<u>\$279</u>	<u>\$220</u>	<u>\$91</u>
Capital Cost (\$/kW-ac)	\$4,474	\$4,674	\$4,675	\$5,650	\$3,830	\$3,071	\$4,282	\$3,141	\$3,071	\$2,425	\$1,000
Fixed O&M (\$/kW-ac)	\$66	\$66	\$55	\$65	\$48	\$32	\$36	\$30	\$36	\$60	\$6
Fixed O&M Escalation	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%
Variable O&M (\$/MWh)	\$ 0	\$ 0	\$ 0	\$ 0	\$0	\$0	\$0	\$0	\$ 0	\$0	\$3
Variable O&M Escalation	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%
Fuel Cost (\$/MBtu)	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0	\$0	\$ 0	\$ 0	\$ 0	\$6
Fuel Cost Escalation	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%
Heat Rate (Btu/kWh)	0	0	0	0	0	0	0	0	0	0	7000
Capacity Factor	27%	26%	30%	43%	25%	21%	27%	20%	25%	35%	90%
Misc Escalation	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%	2.5%
Degradation	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%	0.5%	0.5%	0.5%	0.0%	0.0%
Financial/Economic Asymptions											
Debt Percentage	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	60%
Debt Rate	7%	7%	7%	7%	7%	7%	7%	7%	7%	7%	7%
Debt Term (years)	20	20	20	20	20	20	20	20	20	20	20
Economic Life (years)	25	25	25	25	25	25	25	25	25	25	25
Percent 5-year MACRS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Tax Rate	35%	35%	35%	35%	35%	35%	35%	35%	35%	35%	35%
Cost of Equity	12%	12%	12%	12%	12%	12%	12%	12%	12%	12%	12%
Incontivos											
ITC	200/	200/	30%	300/	200/	200/	30%	300/	200/	300/	200/
ITC Depr Basis	85%	30 % 85%	85%	30 <i>%</i> 85%	30% 85%	30% 85%	85%	85%	85%	85%	85%

* Other Owner's Costs includes site permits & preparation, project management costs, sales taxes, land, property taxes, insurance, architectural costs, interconnection fees, public relations, debt reserve, lender fees, and other administrative costs Source: GTM Research

GTM RESEARCH

Capital Cost per Watt (PV costs converted to AC)

Source: GTM Research

LCOE for a plant in US Southwest by technology

LCOE Forecast by Technology

Shortcomings of LCOE

- LCOE allows for comparison across technologies, but it ignores two of the key characteristics for generation assets:
 - Dispatchability

Natural gas plants can provide firm power, wind and solar plants cannot. LCOE also ignores the capacity payments that are associated with operating a firm generating asset

- Generation Time-of-Day (TOD)

LCOE doesn't consider the time of day when the power is generated. This can be a significant driver of profitability as many PPAs include TOD factors which determine the effective revenue earned per kWh

GTM RESEARC

LCOE doesn't consider differing revenue/kWh from TOD effects

Time of Delivery (TOD)

Solar systems earn higher payments due to TOD multiplier effects. In this example, a PPA with a base rate of \$0.10/kWh pays 2.0x (\$0.20/kWh) for power generated between 1 pm to 8 pm in the summer.

GTM RESEARCH

CSP with storage can earn higher revenue & profits per kWh than PV

Project Economics: PV vs. CSP with Storage								
	PV	CSP						
	(no tracking)	(with storage)						
PPA Price (\$/kWh)	\$0.10	\$0.10						
Avg TOD Factor	1.2x	1.5x						
Avg Revenue (\$/kWh)	\$0.12	\$0.15						
Levelized Cost (\$/kWh)	<u>\$0.11</u>	<u>\$0.12</u>						
Avg Profit (\$/kwh)	\$0.01	\$0.03						
Equity Investor IRR	10%	20%						
	= better technology choice							

GTM RESEARCH